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Students experience a range of difficulties in generating effective diagrams. Hence, it is 
important to explore these difficulties so they can be addressed during instruction on diagram 
generation. A cross-study comparison of the results oftwo network tasks revealed that students 
experience similar difficulties on feature-similar but non-isomorphic tasks. Students' 
difficulties on these tasks appeared to be due to a lack of sense-making. in mathematics rather 
than a difficulty with the problem structure or the generation of a particular type of diagram. 

The use of the strategy draw a diagram is strongly advocated by mathematics educators 
as a tool for problem solving (Australian Education Council, 1991; National Council of 
Teachers of Mathematics [NCTM], 1998). A diagram is a particularly effective problem 
representation because it exploits spatial layout in a meaningful way, enabling complex 
processes and structures to be represented holistically (Winn, 1987). For some students, 
generating a diagram is the first step towards a successful solution (van Essen & Hamaker, 
1990). However, students can also be misled by self-generated diagrams in the solution 
process (Antonietti & Angelini, 1991). Inadequate diagrammatic representations of problems 
may limit children's problem solving capabilities (Klahr, 1978), hence, it is important to 
investigate factors that influence problem representation (Goldman, 1986) and address these in 
an instructional program. Although there is a vast lIterature base on students' difficulties in 
some areas of mathematics (e.g., counting), the literature on primary students' difficulties in 
generating diagrams is scant.. Hence, the purpose of this paper is to explore the various 
difficulties students' experience in the generation of diagrams. 

Knowledge Acquisition through Diagrams 

Representing written problem information on a diagram is initially a translation process 
that involves the decoding of linguistic information and the encoding of visual information. 
During this process, there is the potential for knowledge acquisition (Karmiloff-Smith, 1990) 
through the reorganisation of information (Weinstein & Mayer, 1986) and subsequent 
inference-making (Lindsay, 1995). For example, knowledge about family relationships that 
cannot be easily inferred from a description can be established on a family tree. Sternberg 
(1990) proposed that there are three knowledge acquisition components, namely, selective 
encoding, selective combination and selective comparison. Selective encoding relates to the 
relevance ofthe information that is represented. Some students' representations are unhelpful 
for problem solving because relevant problem information is not included (Dufoir-lanvier, 
Bednarz, & Belanger, 1987). For example, students may represent the surface (irrelevant) 
features of a problem rather than the structural (relevant) features (Dufoir-lanvier et aI., 1987). 
Selective combination refers to how new information is integrated as a discrete entity. The 
diagram is an effective problem representation because problem information is represented by 
location on a plane, and hence, a large number of perceptual inferences about problem 
information is possible (Larkin & Simon, 1987). Selective comparison focuses on the 
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relationship between new knowledge and prior knowledge. This component highlights the 
importance of background knowledge about general purpose diagrams that have applicability 
in problem solving (e.g., networks). 

General Purpose Diagrams 

General purpose diagrams assume an important role in mathematics because they provide 
representational frameworks that are applicable· to a range of problem structures. These 
diagrams are networks, matrices, and hierarchies, and a range of diagrams that exhibit part
whole characteristics. Novick,Hurley, and Francis (1999) developed a theoretical framework 
for networks, matrices, and hierarchies, which described the conditions of , applicability and 
distinguishing properties for these spatially-oriented diagrams. For example, a network isa 
path-like representation (e.g., a train line map), whereas a hierarchy isa tree-like 
representation" (e.g., family·tree). Part-whole diagrams were not included in Novick et "al.'s 
. framework because they have no unique external form. As effective instruction ·isinformed by 
pedagogical content knowledge about students' difficulties and errors (Carpenter, Fennema, & 
Franke, 1996), it is important to explore students' difficulties and errors with each of the 
general purpose diagrams. 

Design and Methods 

This paper discusses the similarity between the results of structurally dissimilar problems 
from two separate studies. 

Study 1 was an explanatory case study (Yin, 1994) in which the effect of instruction on 
children's use of diagrams in novel problem solving wasinvesiigated. The participants were 12 
ten- to eleven-year-old Year 5 students. These students were presented with sets of five 
isomorphic novel problems during 3D-minute interviews conducted before and after a series of 
lessons on the use of diagrams in problem solving. The interviews '. were video-taped and 
subsequently tninscribedfor analysis. One key finding of this study was the recognition· of the 
variety of difficulties and errors students experienced in generating general purpose diagrams 
(Diezmann, 1999). As difficulties and errors in diagram generation constitute· obstacles to 
students' problem solving performance, they were explored further in Study 2. 

Stlidy 2 focused on identifying the range of difficulties that students· experience in 
"generating general purpose diagrams for novel problems. This research was . undertaken using 
an inductive theory-building framework, which . requires description and explanation 
(Krathwohl, 1993). Data were collected until a "saturation" point was reached in which new 
observations did not provide further insight into the phenomenon. The participants in this 
study were a class of25 ten- toeleven-year-old Year 5 students. Data comprised' observations 
of individual children engaged in novel problem solving andthe diagrams they generated during 
interview sessions. Over four videoed interview sessions, the students were presented . with a 
total of eight tasks. Two tasks that could be represented using the same general purpose 
diagram (e.g., networks) were presented at each interView, which lasted approximately 20 

. minutes. 
The . findings of Study 1 nnd Study 2, respectively, revealed that difficulties in diagram 

generation can be due to (1 ) a lack of understanding of the problem structure,' and (2) a . lack of 
understanding of specific general purpose diagrams. During the analysis of the Study 2 data, it 
was noted that while there was limited correspondence between the difficulties students 

229 MERGA23 -July 2000 



experienced on the two network tasks. Howeyer, there was an unanticipated similarity 
between students' difficulties on one of the pre-instruction network tasks in Study land one 
of the network tasks in Study 2. As this correspondence can neither be explained by similarity 
in problem structures nor attributed solely to the general purpose diagram used, the findings 
from these network tasks were investigated further. 

Results 

The two network tasks that revealed similar diagram generation difficulties and errors are 
shown on Figure 1. Although the problems are not isomorphic, there is some obvious 
similarity in the features of the problems (e.g., height measurement and movement). 
Henceforth, these types of tasks are referred to as feature.;.similar tasks. The analysis of 
students' performance on these tasks revealed a range of diagram generation difficulties and 
errors, Three categories of difficulty emerged from students' performance on these tasks: (1) a 
lack of measurement sense, (2) a lack of spatial sense, and (3) a lack of number sense. Due to 
space limitations, the reporting of these difficulties is limited to one set of examples from each 
category. 

Study 1 - The Koala: A sleepy koala wants 
to climb to the top of a gum tree that is 10 
metres high. Each day the koala climbs up 5 
metres, but each night, while·asleep, slides back 
4 metres. At this rate, how many days will it take 
the ~wala to reach the top? 

Study 2 - Bouncing Ball: Sylvia dropped a 
tennis ball from a balcony 8 metres above the 
footpath. Each time the ball bounced it travelled half 
as high as on the previous bounce. Sylvia~s brother 
caught the ball when it bounced exactly 1 metre from 
the footpath. How many times did the ball bounce? 

Figure 1. The Koala and boum~ing ball tasks. 

A Lack of Measurement Sense 

Although, measurement· is integral to daily life and commonly encountered· in applied 
contexts, some students' diagrams revealed the inadequacy of their measurement sense. One of 
the most pervasive errors on these feature-similar tasks was the. incorrect measurement of 
"ground level". On both tasks, many children incorrectly labelled or referred to the ground 
height as one metre. This error is evident in Damien's diagram in which he incorrectly 
identified the first "mark" as one metre, instead of the second mark (see Figure 2). Damien's 
initial error was compounded because the ten marks on his tree· only represent a nine metre 
tree rather than a ten metre tree as specified in The Koala task (see Figure 1). Jane's diagram 
also showed a lack of understanding of ground level. In contrast to Damien, Jane correctly 
indicated that ground height was zero metres. However her diagram suggests that she lacked an 
understanding of the location at which a ball rebounds. Her depiction ofabouncing ball shows 
the ball rebounding from one and two metres above the ground. Thus, Jane' s representation is 
not consistent with the. behaviour of a ball rebounding from ground level nor is it internally 
consistent because Jane has it rebounding from two different heights. In this task, Jane realised 
that if the ball was caught at one metre then ground level could not be one metre. However 
Jane may not have recognised her error if the ball had been caught at two metres. Both Damien 
and Jane's difficulties can be interpreted as a lack of measurement sense though either failure 
to identify ground level as zero metres, or the limited everyday knowledge that a ball rebounds 
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from ground level and rebounds from the same height on each successive bounce. A lack of 
measurement sense was not restricted to difficulties with "ground level", further difficulties" 
and errors were apparent in other students' diagrams. 

The Koala 

Damien: He starts here. [Pointing to aline 
at the base of the tree] 

Researcher: He starts on that mark. What mark 
is that? What number? 

Damien: The first one. 
Researcher: The frrstwhat? 
Damien: The first part ofthe tree. 
Researcher: Okay. If you told me in metres 

how many metres would it be? 
Damien:. One metre. 

The Bouhcing Ball 

Jane: He caught it when it was ... (referring 
to the problem] ... one metre. 

Researcher: One metre. So where is one metre? 
Jane: Away from ... well, there is the ground, 

[indicating the "1" onthe diagram]. 
That's one metre away from the 
ground. No! Zero's the ground .. oh! 

Figure 2. A lack of measurement sense. 

A Lack of Spatial Sense 

Spatial sense is critical in the representation of information on diagrams (Battista, 1999). 
However students have a tendency to lack precision in their representation of position on a 
diagram. For example,alth6ugh Relen understood the forward and backward motion of the 
koala,she did not keep track of the koala's precise location on the diagram (see Figure 3, 
Helen). Consequently, when Helen had completed the koala's movements she was unsure' of 
its exact finishing position. Casey·also had difficulty with spatial' representation. While Casey 
accurately represented the pathway' of the bouncing ball, she was unsure about what was 
represented by her lowest horizontal line (see Figllre 3, Casey). Casey's uppermost line 
depicted the balcony and her series of shorter horizontal lines represented the metres from 
ground level to the balcony. Herinability to identify the lowest horizontal line as representing 
ground level is a particular concern given the difficulties that students experienced with 
"ground level" (see Figure 2). As diagrams capitalise on the use of graphics to structure and 
represent information spatially, the student who produces the diagram should understand each 
graphic component ofa self-generated diagram. Thus, despite the differences in'Helen's and 
Casey's difficulties, their diagrams both revealed a lack of spatial sense. 
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The Koala 

Helen: He had to he climbed up another five 
[metres] and then he slept again and the 
second day when he climbed up -I mean 
the third day he climbed up to the top. 

Researcher: How do you know he climbed up to the 
top are you sure or could he have been 
just a bit lower? 

Helen: He might have been a bit lower. 

The Bouncing Ball 

Researcher: What's this line at the bottom? 
Casey: It's just the finish of the thing. It's 

just the ~I don't know. I just -we 
just do it in class. 

Figure 3. A lack of spatial sense. 

A Lack of NumberSense 

Students' diagrams· also demonstrated a variety of numerically-based errors. The two 
. errors that are shown in Figure 4 relate to confusion over concepts that are opposites. Kate's 
and Ellen 's errors respectively were in confusing "upper and lower", and "halving and 
doubling". While Kate recognised that 10 metres was a height constraint in The Koala 
problem, she failed to realise that 10 metres was the upper height constraint of the tree (the 
point the koala climbed to) rather than the lower height constraint (the point to which the 
koala slid back). This is considered to be a numerical error rather than a measurement error 
because Kate's measurements of the koala's movement were accurate. Ellen's error was in 
confusing halving with doubling. The Bouncing Ball problem states that on each bounce the 
ball travels "half as high as on the previous bounce" (see Figure 1), however Ellen doubled 

. numbers commencing with "eight" when she should have been halving numbers. Ellen made 
two further numerical errors. First, she made a calculation error in doubling 64 to reach 127. 
Second, once Ellen had reached 127 she stopped doubling for no apparent reason. There is no 
correspondence between her answerof 127 and the finishing height of the ball of one metre. 
Both Kate's and Ellen's errors highlight the importance of sound number sense and the 
interrelationship among number, measurement, visualisation and language in problem 
representation. 

In summary, the findings of this cross-study comparison revealed that a lack of 
understanding of specific mathematical features of problems results in similar difficulties being 
detected in the diagrams of feature-similar problems. Although each of the errors made by the 
students in the examples presented was to some extent unique, these difficulties are 1p1ified by 
a lack of sense-making about mathematics in measurement, space or number as the students 
attempted to portray particular problem information on a diagram. Given, the. findings of 
cross-study regularities of difficulties and errors for network tasks, a search for difficulties and 
errors in feature-similar tasks for the other three general purpose diagrams will be followed up. 
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The Koala 

Kate: And then he would climb up to number 
eight and down to four. And then he'd 
climb back up to number nine and slide 
back down to five and then he'd climb up 
to ten and slide back to six and then he'd 
climb up to eleven. I'd have to make the 
tree again. Eleven and slides back down 
to seven and then up to twelve and back 
to eight and then climb up there [13] and 
he'd slide back down t() ... . 

Ellen: 

Ellen: 

The Bouncing Ball 

Well, each time I'm - I'm sort of bouncing 
it, I'm trying to halve the amount that it's 
going down at .... 
[Draws closer and closer segments on the 
diagram arid writes numbers 1, 2, 4, 8, 16, 
32 and 64] 127 [answer] 

Researcher: So you're saying the ball bounced 12Ttimes 
before he caught it. 

Ellen: Mmm. . 
Researcher: Can you tell me how you worked that out? 
Ellen: Well, you have the one and then it bounces· 

two times and then it bounces four times 
and you see it's just sort of doubling each 
time. 

Figure 4. A lack of number sense. 

Conclusion 

. Students' difficulties and errors in generating accurate and effective diagrams are generally 
associated·with students' lack of expertise in diagrammatic representation (e.g., Dreyfus. & 
Eisenberg, 1990). However the results of this cross-study comparison suggests that effective 
diagrammatic representation also depends 011 a souna mathematical knowledge base, which 
includes sense-making in mathematical situations. 

The findings of this cross-study comparison have four key implications for problem 
solving instruction and future research on diagrams. First,knowing students' errors and 
difficulties in generating diagrams· is an important component of effective instruction / in 
diagram generation. Second, instruction should provide opportunities . for the explication· of 
graphic components of the diagram and the relationships depicted by them. Third, students' 
diagrams provide an insight into the strengths and weaknesses of their mathematical 
knowledge. Fourth, though diagrams can support the conceptualisation of a problem, they 
cannot substitute for a lack of basic mathematical knowledge. Thus, diagrams should be 
considered as both representations that stimulate reflection on the problem structure and 
reflections of students' mathematical knowledge. 

The goal of mathematics education is to produc~ numerate citizens for the 21 st century 
who have access to mathematics, who are able to reason analytically, and who can make 
informed decisions (NCTM, 1998). Hence, students' lack of sense-making in mathematics 
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with representations, such as diagrams, is a particular cause for concern III an increasingly 
"data-drenched" and technological society (Steen, 1997): 

As infonnation becomes even more quantitative and as society relies increasingly on computers and the 
data they produce, an innumerate citizen of today is as vulnerable as the illiterate peasant in 
Gutenberg's time. (p. xv) , 
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